605765

Toronto, Canada May 1-3, 2002

The Sixth International Conference on Protection of Materials and Structures from Space Environment

Space & Atmospheric Environments

Janet L. Barth
NASA/GSFC
Flight Electronics Branch

j. Barth/Code 562

5/1/02

Why Environments & Effects Studies?

- Space environments are complex.
- Complexity of spacecraft systems is increasing.
- ♦ Design accommodation must be realistic.
 - » Need minimum impact on performance
 - » Maintain balance between cost vs. risk
- ◆ Environmental problems can be limited at low cost relative to spacecraft cost.

Goal

Use Applied Science Research to Enable Technology Infusion into Space Programs

1. Barth/Code 562

Performance Predictions

Simulated conditions [

Actual conditions

Interaction

Ground Test

Component Model

Environment Model

Physics

- Accuracy of performance prediction is dependent on fidelity of protocols and models.
- Design margins can drive requirements that preclude use of newer technologies.

i. Bartly/Code 562

5/1/02

Natural Environments

- ◆ Atmospheric Density & Composition
- ◆ Plasma
- Radiation Environment
- **◆** Electromagnetic Radiation
- ◆ Meteoroid & Orbital Debris
- ◆ Thermal Environment
- ◆ Geomagnetic Field
- Gravitational Field

J. BartlyCode 562

Meteoroid/Orbital Debris

Meteoroids

- » Primarily remnants of comet orbits
- » Several times a year Earth intersects a comet orbit
- » Asteriod belt Sporadic particles on a daily basis

• Debris

- » Operational payloads, Spent rockets stages, Fragments of rockets and satellites, Other hardware and ejecta
- » USAF Space Command tracks over 7,000 > 10 cm objects in LEO
- » Tens of thousands smaller objects

J. Bartly/Code 562

The Threat

J. Bartly/Code 562

5/1/02

Spacecraft Effects

- ◆ Damage and decompression threat
- ◆ Hypervelocity impacts from larger particles
- ◆ Surface erosion from collisions with smaller objects
 - » Surface effects on thermal, electrical, and optical properties
- **♦** Risk Factors
 - » Duration, vehicle size and design, solar cycle, orbit altitude, and inclination
 - » Threat is highly directional

J. Barth/Code 562

Neutral Thermosphere

- Definition
 - » Atmospheric Density, Density Variations, Atmospheric Composition (AO), Winds
- ◆ Neutral atmospheric constituents
- ◆ 90 600 km
- Neutral gas particles
 - » Lower Atomic oxygen (AO)
 - » Higher Hydrogen & Helium
- Altitude variations due to temperature
 - » Solar cycle effects due to absorption of solar extreme ultraviolet radiation (EUV)
 - » Proxy measurement with 10.7-cm radio flux (F10.7)

J. Bartly/Code 562

5/1/02

Spacecraft Effects

- Spacecraft drag
 - » Density of neutral gas
 - » Altitude decay & torques
- ◆ Materials degradation Erosion
 - » Thermal, mechanical, optical properties
 - » AO (200 400 km), Solar cycle dependent
 - » Effects aggravated by micrometeoroid impacts, sputtering, UV exposure, contamination
- Spacecraft glow
 - » Optical emissions generated by excitation of metastable molecules
 - » Surface acts as catalyst material dependent

J. BartlyCode 562

Plasma Environment

- ◆ Energy < 100 keV No radiation effects
- Ionized gas where electron and ion densities are approximately equal
- Sources
 - » Ionosphere
 - Electrically charged portion of the atmosphere
 - Low energy (eV)/High Density
 - » Geomagnetic substorm activity
 - High energy (keV)/Low density
 - » Solar Wind
 - Sun's corona
 - Seen at > 10 Billion km from the Sun
- Dramatic variation with altitude, latitude, magnetic field strength, and solar activity

]. Bartlı/Code 562

5/1/02

Plasma Interactions - Ionosphere

- Supersonic spacecraft motion through background ions in the plasma
- ◆ Solar array coupling to plasma
 - » Current drain on solar arrays
- Contamination
 - » Dense pressure of atmosphere in LEO
 - » Modification of ambient atmosphere by outgassing
- ◆ Generation and emission of plasma waves
- Polar regions High level of charging
 - » Exposure to auroral electrons, esp. if current collection occurs in ion-depleted wake zones

J. Barth/Code 562

Plasma Interactions - Storms

- ♦ Induced charge on surface
 - » Disrupt operation of electrically biased instruments
- Missions affected
 - » LEO Polar orbits
 - » Geosynchronous orbits are generally a greater concern
- ◆ Effects
 - » Biasing of instrument readings
 - » Arcing upsets to electronics, increased current collection, reattractition of contaminants, ion sputtering which leads to acceleration of erosion of materials

J. Bartlı/Code 562

5/1/02

Conditions for Charging

- Large differential
- ◆ Large fraction of total flux
- Darkness
- Large spacecraft

J. Bartly/Code 562

Charging in GEO

- Strong local time effects
- ◆ Solar storm effects
- ◆ Experience base is in LEO & GEO
 - » MEO?
 - » Auroral regions?

J. Barth/Code 562

5/1/02

The Radiation Environment

Nikkei Science, Inc. of Japan, by K. Endo

J. Barth/Code 562

Radiation Effects

- ◆ Total Ionizing Dose Degradation
 - » Materials
 - » Electronics
- ◆ Total Non-ionizing Dose Degradation
 - » Solar Cells
 - » Optocouplers
 - » Optical lens
- ◆ Single Event Effects Single Particle Strikes
 - » Destructive SEL, SEGR, SEB
 - » Non-destructive SEU, SET, SEFI, MBU
- Degradation of surface materials
- ◆ Deep Dielectric Charging

J. Barth/Code 562

Definition of Contamination

An unwanted material or substance that causes degradation in the desired function of an instrument or flight hardware

1. Barth/Code 562

Systems Affected

- ◆ Optical components lenses
- ◆ Thermal control external paints & blankets
- ◆ Guidance baffles
- ◆ Any sensitive surfaces
 - » Exposed to all environments!

J. Bartly/Code 562

5/1/02

Contamination - Pulling It Together

- Micrometeoroids and debris
 - » Surface erosion from collisions with smaller objects
 - Surface effects on thermal, electrical, and optical properties
- Neutral thermosphere
 - Materials degradation Erosion
 - Thermal, mechanical, optical properties
 - AO (200 400 km), Solar cycle dependent
 - Effects aggravated by micrometeoroid impacts, sputtering, UV exposure, contamination

 Spacecraft glow
 - Optical emissions generated by excitation of metastable molecules
 - Surface acts as catalyst material dependent
- Plasma Ionosphere
 - » Contamination
 - Dense pressure of atmosphere in LEO
 - Modification of ambient atmosphere by outgassing
- Plasma Storms
 - » Reattractition of contaminants, ion sputtering which leads to acceleration of erosion of materials
- Non-ionizing and ionizing dose
 - » Degradation of surface materials & optical lenses

J. Barth/Code 562

Contamination Processes

- Particulates and gases
 - » Outgassing, engine firings, plume impingement, material processes
- **◆** Effects
 - » Charging
 - » Glow
 - » False signals on optical detectors
 - » Surface erosion

J. Barth/Code 562

5/1/02

Complexity Increased by Material Processes

- Atomic Erosion
 - » Infrared Radiation
 - » Particle Radiation
 - » Ultraviolet Radiation
 - » Thermal Vacuum Outgassing

J. Barth/Code 562

Mission Phases for Contamination

- ◆ An Issue at All Mission Phases
 - » Construction & Assembly
 - » Ground Handling & Transportation
 - » Launch
 - » Orbital Insertion
 - » Early Outgassing
 - » Long Term Exposure
 - » Recovery

J. BartlyCode 562

5/1/02

Contamination Risk?

Thermal control surfaces?

H < 1000 km?

Instrument calibration?

Solar UV?

Earth albedo UV?

UV instruments?

IR instruments?

Tion:

Baffle design?

Lens design?

Detector design?

Mirror design?

Spacecraft lifetime?

Cooled detector systems?

J. Bartly/Code 562

Common Issues

- ◆ Many unknowns in space environments & the interaction mechanisms
 - » Model development & validation lags behind technology changes.
 - » Unknowns result in large design margins
 - Higher accommodation/mitigation overheads
 - Can preclude use of newer technologies
- Must be addressed in all design phases
 - » Use a systems approach.
 - » Begin early "Pay now or pay more later"
- ◆ Ground tests cannot duplicate the space environment
 - » Synergistic effects
 - » Enhanced low dose rates

J. BartiyCode 562